195 research outputs found

    An Object-Based Approach to Modelling and Analysis of Failure Properties

    Get PDF
    In protection systems, when traditional technology is replaced by software, the functionality and complexity of the system is likely to increase. The quantitative evidence normally provided for safety certification of traditional systems cannot be relied upon in software-based systems. Instead there is a need to provide qualitative evidence. As a basis for the required qualitative evidence, we propose an object-based approach that allows modelling of both the application and software domains. From the object class model of a system and a formal specification of the failure properties of its components, we generate a graph of failure propagation over object classes, which is then used to generate a graph in terms of object instances in order to conduct fault tree analysis. The model is validated by comparing the resulting minimal cut sets with those obtained from the fault tree analysis of the original system. The approach is illustrated on a case study based on a protection system from..

    Time-lapse sonic logs reveal patchy CO2 saturation in-situ

    Get PDF
    Based on time-lapse sonic and neutron porosity logs from the Nagaoka CO2 sequestration experiment, a P-wave velocity-saturation relation at reservoir depth is retrieved. It does not coincide with either of the end-member models of uniform and patchy saturation but falls in between even if realistic error estimates for the host rock properties are considered. Assuming a random distribution of CO2 patches it is shown that the mechanism of wave-induced flow can be evoked to explain this velocity-saturation relation. Characteristic CO2 patch size estimates range from 1 to 5 mm. Such mesoscopic heterogeneity can be responsible for attenuation and dispersion in the well logging frequency band

    Sensitivity of time lapse seismic data to the compliance of hydraulic fractures

    Get PDF
    We study the sensitivity of seismic waves to changes in the fracture normal and tangential compliances by analyzing the fracture sensitivity wave equation, which is derived by differentiating the elastic wave equation with respect to the fracture compliance. The sources for the sensitivity wavefield are the sensitivity moments, which are functions of fracture compliance, background elastic properties and the stress acting on the fracture surface. Based on the analysis of the fracture sensitivity wave equation, we give the condition for the weak scattering approximation to be valid for fracture scattering. Under the weak scattering approximation, we find that the percentage change of fracture compliance in hydraulic fracturing is equal to the percentage change of the recorded time-lapse seismic data. This could provide a means for monitoring the opening/closing of fractures in hydraulic fracturing through time-lapse seismic surveys.Eni-MIT Energy Initiative Founding Member Progra

    Correction to “Elastic wave speeds and moduli in polycrystalline ice Ih, sI methane hydrate, and sII methane-ethane hydrate”

    Get PDF
    Author Posting. © American Geophysical Union, 2009. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research 114 (2009): B04299, doi:10.1029/2009JB006451

    Sensing, measuring and modelling the mechanical properties of sandstone

    Get PDF
    We present a hybrid framework for simulating the strength and dilation characteristics of sandstone. Where possible, the grain-scale properties of sandstone are evaluated experimentally in detail. Also, using photo-stress analysis, we sense the deviator stress (/strain) distribution at the microscale and its components along the orthogonal directions on the surface of a V-notch sandstone sample under mechanical loading. Based on this measurement and applying a grain-scale model, the optical anisotropy index K0 is inferred at the grain scale. This correlated well with the grain contact stiffness ratio K evaluated using ultrasound sensors independently. Thereafter, in addition to other experimentally characterised structural and grain-scale properties of sandstone, K is fed as an input into the discrete element modelling of fracture strength and dilation of the sandstone samples. Physical bulk scale experiments are also conducted to evaluate the load-displacement relation, dilation and bulk fracture strength characteristics of sandstone samples under compression and shear. A good level of agreement is obtained between the results of the simulations and experiments. The current generic framework could be applied to understand the internal and bulk mechanical properties of such complex opaque and heterogeneous materials more realistically in future
    corecore